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ABSTRACT 

Cloud Computing has become the ubiquitous approach to our 
Big Data challenge. However, one will quickly discover that 
moving (a.k.a. forklifting) existing on-premise data analytics 
solutions to the Cloud doesn’t always translate to costing 
saving and performance boost. The Cloud’s elasticity, its 
availability, and its wide selection of computing options and 
selections of costing models making Cloud an attractive 
environment to tackle our Big Data challenge. The fact is 
Cloud, on its own, is not the silver bullet to our daunting 
challenge need for analyze and derive scientific inferences 
through vast collections of multi-sensor measurements. We 
would like to have all scientific data in one easy to access 
environment, but getting the world of scientific data in one 
analytic system is immensely difficult to achieve. This paper 
describes the data analytics web architecture NASA is 
developing by infusing instances of Integrated Data Analytics 
systems next to the data. The goal is to minimize unnecessary 
data movement through collection of data access and 
analytics webservices for researchers to interact with and 
analyze measurements without have to download data to their 
local computer. These services are RESTful and provisioned 
by the data centers with the help from subject matter and 
science experts. These services encapsulate the physical 
computing infrastructure, which could local computing 
cluster, on-premise or public Cloud environment. 

Index Terms— Big Data, Distributed Analytics, Parallel 
Analytics, Cloud Computing, Ocean Science, OceanWorks, 
Apache SDAP, Apache NEXUS, CEOS, PO.DAAC, NASA 

1. INTRODUCTION 

Climate change is a defining issue of our time. It is touching 
on direct human and societal impacts. With increasing global 
temperature warming of the ocean and melting ice sheets and 
glaciers, the impacts can be observed from our coastline, and 
may involve drastic changes to marine ecosystems. While 
there is no lack of information and publications on climate 
change impacts on aspects such as sea level rise, floods, 
droughts, and hurricanes, understanding of ecosystem level 
impacts on and effects on flood security is critically important 
yet very poorly understood. Adding to the science and data 
integration challenges that understanding these impacts poses 
is the complexity of broader public and policy-maker 

engagement as stakeholders and fundamental determinants of 
future outcomes. 
While much of the satellite observations from various 
disciplines are accessible from different data centers, the 
solution for analyzing decades of measurements and 
coordinating measurements collected from various 
instruments for time series analysis is both difficult and 
critical. Climate research is a big data problem that involves 
high data volume, measurements collected by various 
sources, methods for on-the-fly extraction and reduction to 
keep up with the speed and data volume, and the ability to 
address uncertainties from data collections, processing, and 
analysis.  
For decades scientists have been relying on a common 
process flow, which includes scrape FTP sites, download data 
files to their local computing environment, and developing 
algorithms to analyze the downloaded data. Data center are 
only chartered to distribute file products. In this age of big 
data, our climate research community recognizes the 
traditional analytic workflow is unsustainable. While data 
centers do provide some tools for reduction, such as data 
subsetters, the size of the subsetted data may still be too large 
to download. A more efficient approach is to have large 
analytic solutions right next to the data holdings to eliminate 
data movement. With affordable Infrastructure as a Service 
(IaaS) of commercial Cloud and semantic web, we are still 
seeing much of the informatics community is in the business 
of building one-off, stovepipe tools. Users are finding 
themselves working with different disjoint tools and having 
to manually translate between different data formats and 
nomenclatures, often data have to be transformed into 
different representations to satisfy different tools 
requirements. 
We need a web of Integrated Data Analytics systems that 
shares common taxonomy and provides common webservice 
API for access and analysis that allows the service providers 
to scale-up or scale-down the computing according to the 
requirements and user needs. The users of these services 
shouldn’t have to be concerned about the physical computing 
and internal data management architecture. More 
importantly, these services share common taxonomy and 
nomenclature to enable federated analysis of different 
measurements. 
 
 



 
FIGURE 1: DISTRIBUTED ANALYTICS 
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2. DISTRIBUTED ARCHITECTURE 

The Committee on Earth Observation Satellites (CEOS) 
Ocean Variables Enabling Research and Applications for 
GEOS (COVERAGE) initiative [8] is an international 
initiative that seeks to provide improved access to multi-
agency ocean remote sensing that are better integrated with 
in-situ and biological observations, in support of 
oceanographic and decision support applications for societal 
benefit. While it would be ideal to have all data in one place, 
such as a common Cloud computing environment, such 
solution is unsustainable due to various factors including 
international policies between agencies and security 
requirements, access to subject matter or domain experts, and 
the overall cost for managing and providing open access to 
exabyte (EB) of data in one place. COVERAGE has taken on 
a distributed analytic architectural approach [1] where each 
data provider or agency can standup their own Integrated 
Data Analytics Platform for the data they manage. The 
services share common API, taxonomy, and metadata model. 
All analyzed results are packaged in JSON documents. This 
architectural approach reduces the need for unnecessary 
massive data movement between services and the client 
application will only have to develop logics to process the 
result JSON responses. CEOS Service Registry can be 
established according to the continents and/or agency alliance 
to serve as the data and services lookup and discovery access 
point.  
 

 
FIGURE 2: PLOTTING TIME SERIES BETWEEN RIVER 

AND TRMM PRECIPTATION MEASRUEMENTS 

 
Clients of COVERAGE include 
• Data portals for data and climatological events 

discovery that link to relevant data, analytics services 
and published results. 

• GIS-based domain-specific data tools that is tailored to 
specific science investigation and/or community. 
Examples of such tools include  

o NASA Sea Level Change Portal’s Data 
Analysis Tool (http://sealevel.nasa.gov/data-
analysis-tool/) [3] is an advanced data 
visualization and analysis tool for sea level rise 
research 

o The GRACE Data Analysis Tool 
(https://grace.jpl.nasa.gov/data-analysis-tool/) 
is an advanced analysis tool specifically for the 
GRACE data.  

o The NASA Physical Oceanography Distributed 
Active Archive Data Center (PO.DAAC)’s 
State of the Ocean Tool (https://podaac-
tools.jpl.nasa.gov/soto/) is a web-based tool for 
physical oceanography data. 

• Domain-specific applications which could ranges from 
simple scripts to advanced GIS-based programs iin any 
programming languages (e.g. Python, Java, MATLAB, 
IDL, C/C++, etc.) to orchestrate search results and 
analytic operations. 

• Interactive workbench, such as the popular Jupyter 
Notebook (https://jupyter.org), for researchers to interact 
with these services to create recipes to share with other 
researchers. Fig. 2 is an example of an interactive 
workbench demonstrated at the 2018 CEOS SIT 
Technical Workshop at Darmstadt, Germany [1]. The 
demo generated coordinated time-series between river 
gauges and perception data from the Tropical Rainfall 
Measurement Mission (TRMM). The river time series 
was computed by an analytic service at the NASA JPL 
and the TRMM time series was produced by the analytic 
service hosted under the Amazon Web Services (AWS). 
This demo involved no data movement. The Jupyter 
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Notebook was running on a typical laptop computer 
connected to the internet over WIFI. The demo shows the 
spike on river runoff after abnormal rate of rainfalls 
around February 1998 in the county of Los Angeles. 

 

 
FIGURE 3: ARCHITECTURE FOR AN INTEGRATED 
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3. INTEGRATED DATA ANALYTICS PLATFORM 

An Integrated Data Analytics Platform is an architectural 
concept to encapsulate the scalable computational and data 
infrastructures and to harmonize data, tools and computation 
resources to enable scientific investigations. The goal is to 
create a webservice platform for researchers and tools 
developers to discover, interact and analysis massive amount 
of related data without having to move data between systems 
over the internet. This platform must tackle both storage and 
software architecture together in order to fully leverage of its 
operating environment, such as the elastic cloud, without 
tying the users of the platform to a specific cloud provider 
and/or a specific underlying technology. 
The Apache Science Data Analytics Platform (SDAP) 
(https://sdap.apache.org) is an open source implementation of 
an Integrated Data Analytics Platform. The technology is the 
backend for the NASA’s Sea Level Change Portal, NASA’s 
GRACE science portal, and the core for the NASA’s 
Advanced Information Systems Technology (AIST) 
OceanWorks technology, which will be the analytics solution 
for the NASA’s Physical Oceanography Distributed Active 
Archive (https://podaac.jpl.nasa.gov) for the ocean science 
community. 
Fig 3 illustrates the architecture of an Integrated Data 
Analytics Platform [2]. Rather than aiming for creating a 
killer scientific application, the goal is to create a service 
platform to enable suite of scientific applications and 
systems. The platform can be divided into three tiers 
1. Tools and applications – these are the clients of the 

platform. Their only binding to the platform is through 
RESTful APIs with all responds packaged in JSON 
documents. These clients can be implemented in any 
web-enabled programming languages, that is, able to 
make HTTP(S) calls and able to parse simple text 
response in JSON format. These clients have no 
knowledge of the physical hardware infrastructure and 
how the actual data is being stored. 

2. Services and Workflow – these are the implementation of 
the data access and analytics webservices. They are the 
clients of the Analysis-Ready Storage tier. These 
services and workflow are built to leverage the parallel 
GIS-based data query and retrieval services provided by 
the Analysis-Ready Storage tier. It is a parallel analytic 
environment. The SDAP analytics services are 
implemented using Apache Spark for fast, in-memory 
MapReduce statistical analysis operations. It has no 
knowledge of how the data is physically stored and how 
the spatial indexes are being maintained. These services 
include area-averaged time series, climatological map, 
etc. The Workflow are for automated processing such as 
generation of climatology and large on-demand services. 

3. Analysis-Ready Storage – it is more than a collection of 
disks and folders. The platform is designed for horizontal 
scaling, that is, to enable parallel fetching and apply 
parallel analytics. This tier harmonizes different satellite 
observation data and its metadata to create a unified 
representation of information to simplify the 
development of analytic webservices and workflow 
systems. It is also equipped with its own workflow 
system to automate the discovery, transformation, and 
ingestion of various new observational and model data 
from different data providers. 

The deployment of such big data analytics solution is no 
small task if done manually. As a horizontal-scale solution, 
depending on the volume and the kind of analysis, it involves 
orchestration of large number of compute nodes. Container 
deployment technology, such as Kubernetes and Docker, has 
matured over the years. SDAP packages all of its components 
and services into a collection of Docker containers where the 
deployment can be automated using Continuous Integration 
(CI) tool such as Jenkins or Atlassian Bamboo. 

3.1. NASA’s OceanWorks project and the Apache 
Science Data Analytics Platform (SDAP) 

OceanWorks is an NASA Advanced Information Systems 
Technology (AIST) project to establish an Integrated Data 
Analytics Platform at the NASA PO.DAAC for big ocean 
science. It focuses on technology integration, advancement 
and maturity by bringing together several previous NASA-
funded analytics projects as an effort to deliver a production-
ready data science platform for the ocean science community. 
OceanWorks is a key part of PO.DAAC’s solution for 
analyzing 23PB of NASA’s upcoming Surface Water Ocean 
Topography (SWOT) mission where its data will be hosted 
on the Cloud. Recognizing the building blocks of 
OceanWorks can support multi-disciplinary Earth Science, 
the OceanWorks project collaborates with the Apache 
Software Foundation and established the  Apache Science 
Data Analytics Platform (SDAP) (https://sdap.apache.org). 
The goal is to establish a community-driven and supported 
GIS-based big data analytics platform. The components of 
SDAP includes:  
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• NEXUS: the big data analytics engine. See the following 
subsection. 

• Extensible Data Gateway Environment (EDGE) [4]: a 
GIS-based OpenSearch and metadata translation 
integration service for fast geospatial lookup of data and 
translate metadata into various standards includes ISO-
19115, DIF, UMM-C and UMM-G, etc. 

• OceanXtremes [9]: a big data analytics solution for 
anomaly detection that enables to perform on-the-fly 
computation of daily difference by comparing 
observation against the climatology and provides tools 
for scientists to register anomalies and publish them 
using RSS feed. 

• Distributed Oceanographic Matchup Service (DOMS) 
[7]: a big data analytics solution to perform on-the-fly 
matchup of in-situ measurements against satellite 
observation. To date, the in-situ data include SPURS I/II 
from JPL, SAMOS from the Center for Atmospheric 
Prediction Studies (COAPS) at Florida State University, 
and ICOADS from the National Center for Atmospheric 
Research (NCAR). 

• Data relevancy [10] and event search: the data relevancy 
engine is a machine learning based technology to 
continuously analyze web search logs to dynamically 
rank the relevant datasets. The goal is to have the most 
relevant datasets listed in the beginning of the search 
results. The event search solution is to create relevant 
search respond that is encoded with space and time 
information. If a user searches for a specific hurricane, 
the responding datasets include URLs for the users to 
directly visualize and analyze the relevant data for a 
specific time period and location. 

The Apache SDAP is currently under Apache Incubation 
process. It is in active development and infusion into various 
domain-specific environments. 

3.2. Big data analytics engine 

NEXUS (Fig. 4) is an emerging data-intensive analytics 
framework. It takes a different approach on handling file-
based observational temporal, geospatial artifacts in order to 
fully leveraging existing horizontal-scaling technologies like 
MapReduce and the elastic cloud environment. NEXUS 
breaks the original data file into tiles and stores tiled data in 
cloud-scaled databases with an added high-performance 
spatial lookup service. NEXUS provides the bridge between 
science data and horizontal-scaling data analysis. This 
platform simplifies development of big data analysis 
solutions by bridging the gap between files and MapReduce 
solutions. 
In addition to delivering the typical analytics services such 
as area-averaged time series and coordination map, NEXUS 
is also the base analytic framework for OceanXtremes and 
DOMS. 

 
FIGURE 4: NEXUS' TWO-DATABASE ARCHITECTURE 

NEXUS is designed to be adaptable to different deployment 
environments. It supports on-premise computing cluster and 
private/public cloud (such as AWS). It uses Apache Solr as 
its spatial registry for data tiles, metadata and pre-computed 
tile statistics. For data tile management, NEXUS supports 
fast, cloud-based NoSQL databases like Apache Cassandra 
and ScyllaDB, and it also supports storing tiles in an object 
store like AWS S3. For data ingestion, it uses serverless 
architecture when operate on the AWS and uses an ingestion 
cluster when operate on local hardware. The goal is to create 
a GIS-based analytics framework that is flexible to the 
project needs. Since this is a webservice-based solution, the 
internal infrastructure is hidden from the users of this 
framework. 

3.3. Performance 

NEXUS is still evolving as the community continuously 
finding new ways to improve its architecture and 
performance. A recent benchmark was gathered to analyze 16 
years of MODIS TERRA Aerosol Optical Depth 550 nm 
(Dark Target) (MOD08_D3v6) [5][6] on a point-based, 
regional, and global scale. The analysis involves subsetting 
5790 daily files (2.9GB) and apply analysis on the subsetted 
data. Performance numbers were gathers between NASA’G 
GIOVANNI, AWS EMR, and NEXUS. NASA’s 
GIOVANNI is a popular web-based data analysis tool, that is 
built around file-based analysis. Fig. 5 shows NEXUS 
outperforms the traditional analysis method by hundreds of 
times. What usually takes nearly 30 minutes to compute, it 
only took NEXUS less than 2-second to compute. 
 

 
FIGURE 5: NEXUS PERFORMANCE 
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4. CONCLUSION 

In the age of Big Data, we look to the Cloud as the solution 
to our challenge. We should consider Cloud as an instrument 
to our solution. In order to tackle our big data challenge and 
to deliver high performance analytic capacities to our climate 
researchers, we need to start with a scalable architecture. Our 
goal is to have our computing close to the data and deliver 
services for users to work with the data without the need of 
data download. The idea of Distributed Data Analytics relies 
on federated instances of Integrated Data Analytics systems. 
The demonstration and performance figures presented here 
have proven the importance of having a community-driven 
open source architecture for big data analytics in order to 
deliver end-to-end data management and horizontal-scale 
analytic services, which eliminates the need for massive data 
download and expensive hardware procurement for a 
domain-specific science investigation. The NASA 
OceanWorks will be infused into PO.DAAC to introduce on-
the-fly capabilities to PO.DAAC’s SOTO tool this year. 
Apache SDAP is expected to graduate from the Incubator this 
year as well. 
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